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Abstract. Many years ago it was pointed out by Holbourn that there is an apparent 
breakdown of angular momentum conservation on reflection of circularly polarised light. 
The present paper points out that the discrepancy may be resolved by considering transverse 
positional shifts on reflection as described* by Schilling, Imbert and subsequent authors, 
and examines the values of the shifts necessary to satisfy angular momentum conserkation 
in various situations. It is found that shifts satisfactory in this respect may be obtained by 
use of a fairly general phase-shift argument-similar in formalism to that used by Julia 
and Neveu-at least for the case of total reflection. However, the situation is less satisfactory 
for partial reflection, nor is it clear that the shift values, even for the case of total reflection, 
agree with those measured by Imbert and others, or calculated numerically as by Ashby 
and Miller for instance. It  is suggested that further experimental work may be useful in 
clarifying the situation. 

1. Introduction 

The change in angular momentum of light on reflection has been discussed by relatively 
few workers, despite the appearance in this connection of certain difficulties which 
were pointed out long ago by Holbourn (1936). 

These difficulties arise from the observation that there can be no normal component 
of torque produced at a non-absorbing surface by reflection of light. This conclusion 
can be reached by a reductio ad absurdum: if there were such a torque present, then 
rotation of the surface about its normal (i.e. in its own plane) would do  work on the 
light, changing its frequency, and this would lead to the phase of the outgoing beam 
being dependent on the angle through which the surface is turned about its normal; 
since there is actually full rotational symmetry of the reflecting surface about its normal, 
this result is absurd and the torque must therefore in fact be zero. Hence, the flux of 
normal component of angular momentum of the light, across a surface surrounding 
the region of reflection, is also required to be zero. For an absorbing surface the 
argument does not apply, since in this case the rotation invoked in the reductio ad 
absurdum may do  work on the surface, via the dissipative forces, rather than on the light. 

In view of this argument, Holbourn examined the case of external reflection from 
a simple dielectric surface and found a non-zero net flux of the normal component of 
intrinsic angular momentum. To show this, consider a circularly polarised incident 
beam with energy flux Fi (and hence intrinsic angular momentum flux F i l m ,  indepen- 
dent of the refractive index of the medium). If the angle of incidence is i ,  then this 
angular momentum flux has a component normal to the reflecting surface which is 
just ( F i l m )  cos i ,  measured per unit area of the beam. Throughout this paper, we shall 
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use quantities normalised to unit area of illuminated interface; since the ratio of 
illuminated area to beam area is just l /cos i, the flux of normal component of angular 
momentum, per unit area of illuminated interface, is ( F , / w )  cos’i, for the incident 
beam. Treating the contributions from the reflected and transmitted beams similarly 
gives for the net flux S’ of normal component of angular momentum across unit area 
of the illuminated interface: 

where i ‘  is the angle of refraction, pT and p- are the amplitudes in the reflected beam 
for light polarised, respectively, like and orthogonal to the circularly polarised incident 
beam and 7, and T -  are similar quantities for the transmitted beam (all measured 
relative to the incident beam amplitude, and also calculated so that in each case the 
squared modulus is equal to the relative energy flux of the relevant component of the 
beam). Take now for illustration the case of incidence from a medium of refractive 
index 1, onto a medium of index n. As discussed further in 9 3, the amplitudes for 
reflection and transmission of circularly polarised components are related to the usual 
reflection and transmission ratios r l ,  , r L ,  t l ; ,  t ,  for linearly polarised components (with 
electric vector parallel and  perpendicular to the plane of incidence) by 

in which the factor d 5  is included so that / T , / ~  and / T - / ~  give the relative energy fluxes 
in the transmitted beam components. If we further specialise for simplicity to the case 
of Brewster angle incidence, then Fresnel’s equations give 

and substituting these values in equation (1.2) we find from equation (1.1) that S’ has 
the non-zero value 

It is clear that, even had S’ been zero in this particular case, one could envisage coated 
surfaces with more or less arbitrary values of reflectance for which S’ certainly would 
not vanish. Similar remarks of course apply for an arbitrary input beam, although 
here the detailed results are rather less simple in general. We may, however, use an  
argument similar to that for equation (1.1) to conclude that in general the flux of 
normal component of intrinsic angular momentum, per unit area of illuminated inter- 
face, is 

Fi 
S’ = - [(I, - I..) cos2 i + ( R ,  - R - )  cos2 j - ( T,  - T-.) cos2 j ’ ]  

w (1.5) 

where I,, I-, R,, R - ,  T,, T- denote the relative intensitities (i.e. energy fluxes) of 
the right- and  left-handed circularly polarised components of incident, reflected and 
transmitted beams, with the normalisation 

I++ I- = 1. 
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The present paper will examine an additional source of angular momentum flux, 
associated with positional shifts of the reflected and  transmitted beams, which, com- 
bined with the flux of intrinsic angular momentum expressed by equation ( l S ) ,  can 
give zero net flux as required for conservation of angular momentum. It will be 
demonstrated that the values of positional shifts apparently required for angular 
momentum balance are consistent with some, but not all, of the values reported in the 
literature. In addition, a relatively simple argument (partly following Julia and Neveu 
(1973)) will be developed and  shown to give positional shifts consistent with correct 
angular momentum balance in a variety of situations, including total reflection and at 
least some cases of partial reflection. 

2. Transverse positional shifts and angular momentum 

Transverse (or  lateral) shifts in position of light beams undergoing reflection, in cases 
where the beams have elliptical polarisation, are now well known and indeed have 
caused considerable interest for some time (see, for instance, Costa de  Beauregard 
and Imbert 1973, Julia and Neveu 1973, Ashby and Miller 1976). Such shifts, in which 
there is a positional displacement between the incident and reflected beams which is 
directed normal to the plane of incidence, arise in a fashion similar to the longitudinal 
positional shifts described earlier by Goos and  Hanchen (see, for example, Lotsch 
1970a, b).  The transverse positional shifts, combined with optical radiation pressure, 
provide a source of angular momentum flux which was neglected by Holbourn. 

In order to derive a value for this additional flux of angular momentum, consider 
the general case of partial reflection in which the reflected and transmitted beams are 
both displaced from the incident beam; the components of this displacement normal 
to the plane of incidence will be written S, and S,, respectively, for the two beams, 
and will be referred to as the transverse positional shifts. If n and n’ are the refractive 
indices for incidence medium and transmission medium, respectively, then the reflected 
beam will carry an effective flux of momentum ( n / c ) F , ( R + + R - ) ,  with a component 
( n / c )  Fi( R+ + R - )  sin i parallel to the plane of the reflecting surface; the corresponding 
component for the transmitted beam is ( n ’ / c ) F , (  T++ T-)  sin i’. The refractive indices 
in these expressions account for the observed behaviour of radiation pressure in a 
refractive medium (Jones and  Leslie 1978). Taking moments about the centre of the 
incident beam, these radiation pressures contribute a torque about the normal to the 
surface, per unit area of illuminated interface, given by 

(2.1) 
F, L‘ = - [ n( R ,  + R - ) S ,  cos i sin i + n’( T+ + T-)S,  cos i ‘  sin i’] 

in which the factors cos i and cos i ’  arise from the normalisation to unit area of the 
interface, as in the argument leading to equation (1.1). L’ thus gives the additional 
component of flux of angular momentum. Conservation of the component of linear 
momentum parallel to the reflecting interface ensures that the value of L’ is actually 
independent of the point about which moments are taken. 

The above argument could be criticised on the basis of the value taken for radiation 
pressure in a medium. As an  alternative, one can discuss the torque on a pair of cones 
having a common axis and fixed base to base, with one cone of each medium. Then, 
the plane interface constitutes the reflecting surface, and as a simplification the conical 
surfaces may be antireflection treated and chosen normal to the beams traversing them. 

C 
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Such an object should suffer zero net torque by the argument given in 8 1 and the 
value of L’ appropriate to this case is again given as above, for the beam momenta 
may all be calculated in vacuo, and the factors n, n’ now arise through a change in 
refraction angle at each conical surface due to the relevant displacement. 

Hence, on either argument, the shift-dependent part of the flux of normal component 
of angular momentum is, using Snell’s law in equation (2.1),  

(2.2) F, . 

in which n refers to the incidence medium. 
Now the question arises of what values to employ for the shifts. The case which 

has been most extensively studied is that of total internal reflection of circularly 
polarised light at near critical incidence, for which the state of polarisation of the 
incident light is unchanged on reflection. In this situation one has just I, = 1 ,  I- = 0 ,  
R ,  = 1 ,  R- = 0, T+ = 0, T- = 0 and, substituting these values in equations (1 .5 )  and 
(2.2), respectively, gives 

L’= n-sin i [ (R++ R-)&cos  i + ( T + +  T - ) S ,  cos i’] 
C 

Fi L‘ = n - cos i sin i S,. 
C 

(2.3) 

Substitution of an  actual value of transverse positional shift S, in (2.4) now allows the 
total angular momentum flux S’+ L‘ to be obtained. If angular momentum balance is 
required, this analysis therefore favours the expression for transverse positional shift 

C 
S, = 2  - cot i 

nw 

obtained by Schilling (1965) using a phase shift argument, and not the form 

C 1 
s , = 2 -  

nw cos i sin i 

(2.5) 

suggested by Ricard (1970) and Imbert (1972) on energy flux considerations. 
The arguments used by the cited workers in obtaining the conflicting values for S, 

exemplify well the two main methods used to evaluate both the longitudinal and 
transverse positional shifts. Phase shift arguments essentially use an  approach from 
Fourier optics: the beams are considered as a superposition of plane wave components 
with wavevectors of differing directions. If these components undergo a process which 
introduces a relative phase shift depending on wavevector direction, the structure of 
the beam is altered; in particular, a phase shift proportional to wavevector angle is 
equivalent to a change in beam position. Energy flux methods consider the detailed 
energy balance in the optical beams, using the Poynting vector to calculate energy 
fluxes: for instance, in the case of total internal reflection, calculation of longitudinal 
and transverse components of the Poynting vector in the evanescent wave is used to 
derive values of the longitudinal and transverse positional shifts. Imbert (1972) points 
out the discrepancy between the results of the two approaches, but does not identify 
a specific error in Schilling’s analysis. 

The work of Imbert (1972) and Costa de  Beauregard and Imbert (1973) included 
experimental verification of the energy flux result (equation (2.5)); however, these 
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experiments have subsequently been criticised, particularly by Julia and  Neveu (1973) 
and Ashby and Miller (1976). These workers all use phase shift arguments. Julia and  
Neveu obtain results in agreement with the experiments, but their argument involves 
the conclusion that Costa de  Beauregard and  Imbert actually measured something 
other than a simple transverse positional shift. Ashby and  Miller point out that the 
reflection phase shifts are rapidly varying near the critical angle, and seek to take this 
into account by performing numerical calculations on actual wavepackets. Thus no 
analytical expression for the transverse shifts is obtained and, although the difference 
between shifts for right- and  left-hand polarisations is roughly equal to the simple 
phase shift prediction, it is found that both polarisations are actually shifted in the 
same direction. This remarkable result clearly does not lead to a simple picture of 
angular momentum balance. 

In view of all this, it appears to be of interest tc see just how well a simple analytical 
phase shift argument agrees with the requirement of angular momentum balance. It 
will be particularly desirable to obtain results which are relatively insensitive to the 
detailed properties of the surface, so that the case of multilayer coatings can be included. 
Such a treatment is, of course, unlikely to handle detailed modelling of the structure 
of particular reflected wavepackets, but one hopes it may lead to reliable average values 
of the shifts. 

3. Total internal reflection 

We shall first reconsider the case of total internal reflection. In  applying a phase shift 
argument, it is necessary to decide the form of beam to be constructed. Consider a 
beam in which all component plane waves have wavevectors with the same value of 
wavevector component normal to the reflection interface; this will enable us to study 
the transverse shifts for images of two-dimensional objects whose planes contain the 
normal to the interface, and which have no  variation in structure in the direction of 
the normal. Such a restriction does not seem to be unduly severe and  has the advantages 
that, since all beam components have the same angle of incidence, variations of 
reflection phase shifts with angle of incidence d o  not enter the problem. All that does 
enter is the relative rotation of vectors lying in the incidence planes, and  normal to 
the wavevectors. Such rotations correspond to phase shifts of circularly polarised 
components of the beams and  lie at the basis of the phase shift description of the 
transverse displacement. 

It is in fact quite convenient to represent the state of polarisation, amplitude and  
phase of each beam by circular components, related to the standard Jones representation 
(see, for example, Shurcliff 1962) as follows. In the standard representation, the state 
of a (completely polarised) beam is represented by the vector 

[::I 
in which all and a ,  are the complex amplitudes of components of the electric vector 
parallel and  perpendicular to a reference axis (which must be normal to the beam and, 
for the case discussed here, will be taken in the plane of incidence). In this representa- 
tion circularly polarised beams have the Jones vectors: 
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( j  = J - 1  has been used to avoid confusion with the angle of incidence i). We now 
introduce the complex amplitudes of circular components a +  and a- by writing 

from which it follows that the circular components are related to the linear components 
of the standard representation by 

(3.1) 

Then the plane wave component of the reflected beam which has its wavevector along 
the nominal beam direction (the central component) will be related to the incident 
beam by 

P -  P+ 
(3.2) 

where i,, i - ,  r + ,  r- are the circular components of the incident and  reflected beams, 
respectively, and where comparison of the linear aiid circular representations (using 
a development similar to that leading to equation (3.1)) shows that 

(3.3) 

(which has already been used in equation (1.2)). It will be noted that for total internal 
reflection the transformation matrix in equation (3.2) is unitary. Now, for a plane 
wave component of the beam whose wavevector makes an  angle 8 with the central 
component, one may write 

P+ = f ( r1, + rL) P- = f(r11- r , )  

in which the phase shifts pi, cpr are functions of 8 and express the effect of the rotations 
mentioned above, but p+ and p- remain constant. Again, the transformation matrix 
is unitary for total internal reflection. Now, the geometry enables cpi and cpr to be 
expressed in terms of 8. Consider two plane wave components of the incident beam, 
whose wavevectors lie in planes of incidence inclined at an  angle +, and consider an  
electric vector for each wave lying in the respective plane of incidence (and of course 
normal to the respective wavevector). Use of elementary vector algebra shows that, 
for small angle +, the angle between the wavevectors is 8 = 4 sin i, while the angle 
between the electric vectors is cp = $ cos i. This angle cp is interpreted as the phase 
shift between circularly polarised components of the two plane waves concerned and, 
on this interpretation, one obtains 

so that, from 

with 

cp, = cpr = e cot i 

(3.4) and (3.5) 

cp+ = 2 8  cot i. 
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By using the explicit forms rll = exp(js, ,)  and rl = exp( js1), and using the transformation 
equation (3.1), it may be verified that this corresponds to the transformation matrix 
A written by Julia and Neveu in the linear representation. In the case they consider, 
however, the geometry determines that cp+ (their angle cp) has a different dependence 
on 8, and that p+ and p- also depend on 8. 

Returning to our case, for a circularly polarised input beam of unit intensity ( i ,  = 1, 
i -  = 0 ) ,  the output beam will have the form 

(3.8) 

and will appear to consist of two circularly polarised components, of which only that 
polarised in the same sense as the input beam suffers a transverse displacement. 
Introducing the usual relation between transverse positional shift and rate of change 
of phase: 

(3.9) 

(where the dot represents differentiation with respect to 8) allows the shift of each 
polarisation component to be obtained. An 'average shift' may now be defined as the 
average of these two individual shifts, weighted by the relative intensities of the 
polarisation components; consideration of the derivation of equation (1.5) shows that 
this average value is what is required for the values of S, and S,. Using (3.9), the 
average shift for the beam represented in equation (3.8) is 

C 
S, = 2 - 1 p+I2 cot i. nw 

For the case of a general input beam, the output beam 

(3.10) 

(3.11) 

shows a less simple form. However, if we assume the beam can be decomposed into 
orthogonal components each showing a simple phase shift such that 4 is constant 
across the plane wave components of the beam, then the average value of shift may, 
by an argument similar to that for equation (3.10), be written 

(3.12) 

where r, , r 2 ,  i ,  , i2 represent the beams in terms of the appropriate shift eigenstates, 
and where T is the transformation matrix (appearing in equation (3.6)) written in the 
new representation. Thus the matrix -j( c /  nw)  Tt  T acts as an operator representing 
the transverse positional shift. In the case that T is unitary, the shift operator is 
Hermitian, the shift eigenstates are orthogonal and the shifts take real values, as desired. 
These points were recognised by Julia and Neveu. Hence to obtain the average shift, 
we may proceed in the original representation and find (at 8 = 0) 
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C 

nw 

7 2  C 
= 2 -cot i [Ip+l-(ii+l -1i-1’) - p + p ? ( i T  i- - i ,  i ! ) ]  

nw 

This may be put into a more convenient form by using the result 

l r+ / ’ -  Ir-12 = (lp+12 - I p-1 ) ( [ i + l - -  l i - 1 2 )  + ( p z p -  - p + p E ) ( i r  i -  - i+ i ! )  

(which follows from equations (3.2)) and the fact that, since T is unitary, 

2 7  

* P +  P -  - P+ p! = -2p ,  p ? .  

Substitution of equations (3.14) and (3.15) into (3.13) gives 

C 
S,  = - cot i ( i i $ -  l i - /*+ lr+I2- Ir-1’) 

no 

C -_  - Cot i (  I ,  - I -  + R+ - R - )  
no 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

in the notation of $ 1. This appears to be consistent with the full result of Schilling 
(1965), as given in equation (35) of his cited work. It also provides correct angular 
momentum balance: for the case of total internal reflection, equation (1.5) reduces to 

F. 
S‘ = o COS’ i (  I ,  - I _  + R,  - R-)  (3.17) 

while equation (2 .2 )  reduces to 

Fi L’ = n - cos i sin i S, 
C 

(3.18) 

and substitution of equation (3.16) in (3.18) provides the required result. 
The results of this section thus appear again to support the phase shift calculations 

(i.e. for the case of total internal reflection with an arbitrarily polarised beam) and the 
general measure of agreement between various workers seems to be fairly good. 
However, there is one comparison with the method of Julia and Neveu which is of 
interest. They suggest that the output beam should consist of two positionally shifted 
components, namely the eigenstates of the shift matrix -j( c/ no) Ti 1. However, as we 
point out above in discussing equation (3.8), for the particular case of a circularly 
polarised input the output beam appears to consist of positionally shifted circularly 
polarised components, and these are certainly in general not the eigenstates of 
-j( c/ n w )  Ti  1. In fact, the usual diagonalisation procedure (together with the fact that, 
for total internal reflection, p+ and p- differ in phase by ~ / 2 )  gives for these eigenstates 

which transform under T to 

(3.19) 

(3.20) 

respectively; these then represent the polarisations of the output beam shift eigenstates. 
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The axes of the polarisation ellipses of all the states represented in expressions 
(3.19) and  (3.20) are inclined at 45” to the principal axes of the reflecting interface. 
Other features are best studied by reference to the Poincark sphere (see, e.g., Shurcliff 
1962). The input states are situated at such a distance from the poles of the sphere 
(representing the circularly polarised states) that the retardation effect of the reflection 
moves each across the corresponding pole to an  output state having the same polar 
distance as the input state. Such states possess to first order the desired property that 
a rotation followed by the (constant) retardation and a second, equal, rotation transform 
to a final state which is independent of the size of the rotation. Now, the superposition 
of two such orthogonal states with fixed amplitude but variable relative phase results 
in a state lying on a small circle on the Poincark sphere, with the plane of the circle 
normal to the diameter joining the orthogonal states, and the position on the circle of 
the resultant state depending on the relative phase between the component states. In 
the case of incident circularly polarised light, the output state (equation (3.8)) actually 
traverses a circle of constant latitude on the sphere (as 0 and hence q +  vary), while 
the corresponding superposition of shift eigenstates traverses a circle tangent to the 
former circle but passing through one of the poles. The two cases coincide exactly 
only for p -  = 0, which occurs at critical incidence, when the shift eigenstates are states 
of circular polarisation. This sort of correspondence is satisfactory in discussing average 
shifts, but suggests that the detailed structure of the output state cannot in general be 
handled satisfactorily by either theory. in agreement with the remarks of Ashby and 
Miller (1976). 

4. Partial reflection 

The case of partial reflection was treated by Schilling (1965) but has been largely 
neglected since. It is clear that the simple formulation adopted above extends immedi- 
ately to the reflected beam and, with a little care, to the transmitted beam. For the 
latter, the transformation matrix takes the form 

where consideration of the geometry (using an  argument similar to that leading to 
equation (3.5)) gives 

, cos i 
c p r = O  - 

sin i’ (4.2) 

cp, = -8’ cot i (4.3 1 
in which 8’ represents the angular displacement of wavevector in the transmission 
medium. Multiplying out the matrices in equation (4.1) gives 

(4.4) 

in which 

cp+ = q, + q, = e’( cos i - cos i’)/sin i’ 

q-- = cp, - cp, =  COS i +cos ;‘)/sin i‘. 

(4.5) 

(4.6) 
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The transverse positional displacement can be related to rate of change of phase shift 
by 

c s =-(o 
n‘w 

(4.7) 

where the dot now represents differentiation with respect to 8’. 
In applying these results, however, one difficulty presents itself; for neither reflection 

nor transmission is T unitary, and the corresponding shift matrix - j ( c / n w )  T’T is no 
longer Hermitian. This suggests that the predicted values of S, and S,  may be complex; 
such a non-physical result corresponds to the fact that differently directed plane wave 
components of the beam may differ in the relative intensities transmitted and reflected. 
If we ignore this difficulty for the present, formal results for the average shifts (following 
the same argument as for equation (3.12)) may be written as 

(4.9) 

where the dot denotes differentiation with respect to 6 for S,,  to 0’ for S , ,  and where 

[ ‘ + I  r- = T, [ I -  ‘-1 and [ ‘ + I  t -  = T, [ I -  i + ]  
(4.10) 

Following a procedure similar to that for equation (3.13), these may be evaluated to give 

and 

c 1  s =-- {cos i[(1T+/2+I$-J2)(li+12-Ii-/2)-($+$1:+TT7-)(iTi_- i+i?)]  ‘ nw sin i 

- cos if[( 1 T+ 1 ’  -  IT-^*) ( 1  i+12 - 1 i -  1 2 ,  

- (7, T? - T T  T-)( i: i -  - i+ i?)]} 
1 

(4.12) 

so that S,  and S,  indeed take complex values, unless either i+ = 0 or i- = 0 (in which 
case the intensity variation mentioned above cannot occur). In this special case, the 
result for S, is again consistent with that of Schilling. A formal result for L’ may be 
obtained by substituting (4.1 1) and (4.12) into equation (2.2), and using R+ = jrilz, 
etc. This gives 

L’=-{ ( I+ -1 - ) [2 /p+~*cos~  i+(17+1*+17-/’) cos i cos  i ’ - ( ~ ~ + ~ * - ~ ~ ~ ~ ~ )  cos’ i f ]  

l t+ l2+l t - ( ’  

F, 
w 

-(iTi--i+i?)[2p+pTcos2 i+(.r+TT+T*,T-)cos i cos  i’ 

- ( T, 7: - T T  7-) cos’ if]}. (4.13) 
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A reduction is possible by introducing the requirement for energy balance in the 
reflection process: 

(4.14) 
cos i ’  
cos i 

R,+ R-+- ( T+ + T- )  = 1 

which, on being written out in terms of the reflection and transmission parameters, 
imposes on these parameters the conditions 

and 

(4.15) 

(4.16) 

Substitution of (4.15) and (4.16) into (4.13), and use of (3.14) with the equivalent 
result for transmission, then shows that L’ in fact has a real value in all cases, and  can 
be written in the form 

(4.17) 

Hence only for the special case of circularly polarised incident light does the simple 
theory provide a firm prediction for the transverse positional shifts; but even in cases 
for which the treatment yields non-physical values for the positional shifts, the formal 
value of L’ is in accordance with angular momentum balance. It is, of course, clear 
that the theory for partial reflection is much less satisfactory than for total reflection, 
but it does appear that the cases we are unable to treat adequately are those for which 
the output beam structures are simply not adequately described by a straightforward 
transverse shift. 

One other approach is possible here: one may calculate phase shifts and  associated 
transverse displacements for the input and  output spaces separately for each beam 
and obtain the corresponding total shift by addition. This can be done using equations 
(3 .5 )  and (4.3) for the phase shifts involved and leads to a very simple final form 

F, L‘=  - [ ( I ,  - I-) cos’ i + ( R ,  - R - )  cos’ i - ( T ,  - T- )  cos’ if]. 
w 

R+- R-  
R++R-  

l+-l-+- 
nw 

s =-- ( I + - I _ ) c o s  i-- cos i‘ T+ - T- 

C 

‘ nw sin i T+ + T- 

(4.18) 

(4.19) 

Moreover, use of the general energy conservation result (4.14) ensures angular momen- 
tum conservation in all cases. This value of S,  is consistent with that of Schilling. 
Despite these attractions, it seems to be difficult to justify the line of reasoning used, 
or  indeed to escape the conclusion that a simple shift is not a valid description in the 
general case. The question of angular momentum balance in this case seems to require 
a more sophisticated approach. 

Finally, the application of an  energy flux approach to the case of partial reflection 
will be briefly discussed. At first sight it is not obvious that such an approach leads 
to any transverse shift for partial reflection. However, as shown by Imbert (1972), 
there is a transverse component of Poynting’s vector in the region of overlap of incident 
and reflected beams. Although this component is oscillatory in the direction normal 
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to the surface, its integral over the overlap region (roughly triangular in cross section) 
will be quite definite for beams more than a few wavelengths in width. This integral 
is zero for the case of total internal reflection, but turns out not to be so for partial 
reflection. Moreover, it shows the expected dependence on polarisation. However, 
one cannot extract separate values for S ,  and S,; in fact one can argue that the 
combination obtained is just that appearing in L’. Once again, the value of L’ in no 
(non-trivial) case agrees with the phase shift value or the requirement of angular 
momentum balance. 

5. Conclusions 

Despite the considerable volume of theoretical work on transverse shifts, and the 
considerations of this paper, the situation remains confused and the experimental 
background remains meagre. It would seem highly desirable to measure true transverse 
shifts in situations of‘ varying angle of incidence and polarisation, including the case 
of partial reflection. 
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